Part Number Hot Search : 
MAX671 IL208A CMY3605 12H57AD G40TSM CA239E 1212A XFADSL16
Product Description
Full Text Search
 

To Download R1140Q221D-TL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  '2001.3.1 sc82 120ma ldo regulator r1140q series rev. 1.11 - 1 -  outline the r1140q series are voltage regulator ics with high output voltage accuracy, low supply current, low on-resistance, and high ripple rejection by cmos process. each of these voltage regulator ics consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit, and a chip enable circuit. these ics perform with low dropout voltage and a chip enable function. the line transient response and load transient response of the r1140q series are excellent, thus these ics are very suitable for the power supply for hand-held communication equipment. the output voltage of these ics is internally fixed with high accuracy. since the package for these ics is sc-82ab (super mini-mold) package, high density mounting of the ics on boards is possible.  features z ultra-low supply current......................................... typ. 75 a z standby mode ........................................................... typ. 0.1 a z low dropout voltage ................................................ typ. 0.15v(i out =100ma output voltage=3.0v type) z high ripple rejection ............................................... typ. 75db(f=1khz) z low temperature-drift coefficient of output voltage typ. 100ppm/ c z excellent line regulation ......................................... typ. 0.05%/v z high output voltage accuracy.................................. 2.0% z excellent dynamic response z small package ..........................................................sc-82ab(super mini-mold) z output voltage...........................................................stepwise setting with a step of 0.1v in the range of 1 .5v to 4.0v is possible z built-in chip enable circuit (b/d: active high) z built-in fold-back protection circuit ..........................typ. 40ma (current at short mode)  applications z power source for cellular phones such as gsm, cdma and various kinds of pcs. z power source for electrical appliances such as cameras, vcrs and camcorders. z power source for battery-powered equipment.
rev. 1.11 - 2 -  block diagram r1140qxx1b r1140qxx1d v dd v ou t gnd 4 32 1 vref current limit + - ce v out ce v dd gnd 4 3 2 1 vref current limit + -  selection guide the output voltage, mask option, and the taping type for the ics can be selected at the user's request. the selection can be ma de by designating the part number as shown below; r1140qxx1x-xx part number abcd code contents a designation of package type : q:sc82-ab (super mini-mold) b setting output voltage (v out ) : stepwise setting with a step of 0.1v in the range of 1.5v to 4.0v is possible. c designation of mask option : b: without auto discharge function at off state. d: with auto discharge function at off state. d designation of taping type : ex. tr, tl (refer to taping specifications; tr type is the standard direction.)
rev. 1.11 - 3 -  pin configuration sc-82ab mark side 12 3 4  pin description pin no. symbol description 1v out output pin 2 gnd ground pin 3 ce chip enable pin 4v dd input pin  absolute maximum ratings item symbol rating unit input voltage v in 6.5 v input voltage(ce pin) v ce -0.3 ~ v in +0.3 v output voltage v out -0.3 ~ v in +0.3 v output current i out 140 ma power dissipation p d 150 mw operating temperature range topt -40 ~ 85 c storage temperature range tstg -55 ~ 125 c
rev. 1.11 - 4 -  electrical characteristics  r1140qxx1b/r1140qxx1d topt=25 c symbol item conditions min. typ. max. unit v out output voltage v in = set v out +1v 1ma i out 30ma v out 0.98 v out 1.02 v i out output current v in - v out = 1.0v 120 ma ? v out / ? i out load regulation v in = set v out +1v 1ma i out 120ma 12 40 mv v dif dropout voltage refer to the electrical characteristics by output voltage i ss supply current v in = set v out +1v 75 150 a istandby supply current (standby) v in = v ce = set v out +1v 0.1 1.0 a ? v out / ? v in line regulation set v out +0.5v v in 6v i out = 30ma (in case that v out 1.6v, 2.2v v in 6v) 0.05 0.20 %/v rr ripple rejection f = 1khz, ripple 0.5vp-p v in = set v out +1v, i out = 30ma (in case that v out 1.7v, v in ? v out =1.2v) 75 db v in input voltage 2.2 6.0 v ? v out / ? t output voltage temperature coefficient i out = 30ma -40 c topt 85 c 100 ppm / c ilim short current limit v out = 0v 40 ma r pu ce pull-up resistance 1.5 4 16 m ? v ceh ce input voltage ?h? 1.5 v in v v cel ce input voltage ?l? 0.0 0.3 v e n output noise bw=10hz to 100khz 30 vrms r low low output nch tr. on resistance (of d version) v ce =0v 70 ?  electrical characteristics by output voltage topt = 25 c dropout voltage v dif (v) output voltage v out (v) condition typ. max. 1.5 v out 1.6 0.36 0.70 1.7 v out 1.8 0.30 0.50 1.9 v out 2.0 0.28 0.45 2.1 v out 2.7 0.24 0.40 2.8 v out 4.0 i out = 120ma 0.18 0.30
rev. 1.11 - 5 -  technical notes when using these ics, consider the following points: phase compensation in these ics, phase compensation is made for securing stable operation even if the load current is varied. for this purpose, be sure to use a 2.2 f or more capacitor c out with good frequency characteristics and esr (equivalent series resistance). (note: when the additional ceramic capacitors are connected to the output pin with output capacitor for phase compensation, the operation might be unstable. because of this, test these ics with as same external components as ones to be used on the pcb.) pcb layout make vdd and gnd line sufficient. when the impedance of these is high, it would be a cause of picking up the noise or unstable operation. connect a capacitor with as much as 1.0 f capacitor between v dd and gnd pin as close as possible. set external components, especially output capacitor as close as possible to the ics and make wiring shortest.  test circuits c2 = tantal2.2 f * c1 = tantal1.0 f c1 v out c2 gnd ce v out v dd 3 4 r1140q series i out 1 2 v fig.1 standard test circuit c2 = tantal2.2 f * c1 = tantal1.0 f a i ss c1 c2 gnd ce v out v dd 3 4 r1140q series 1 2 fig.2 supply current test circuit
rev. 1.11 - 6 - c2 gnd ce v out v dd 3 4 r1140q series i out 1 2 pulse generator pg fig.3 ripple rejection, line transient response test circuit c2 = tantal2.2 f * c1 = tantal1.0 f c1 i outb c2 gnd ce v out v dd 3 4 r1140q series i outa 1 2 fig.4 load transient response test circuit  typical application c1 c2 gnd ce v out v dd 3 4 r1140q series 1 2 out in (external components) output capacitor; tantalum type
rev. 1.11 - 7 -  typical characteristics 1) output voltage vs. output current r1140q151x 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.05 0.1 0.15 0.2 0.25 0.3 output current i out (a) output voltage vout(v) r1140q281x 0 0.5 1 1.5 2 2.5 3 0 0.05 0.1 0.15 0.2 0.25 0.3 output current i out (a) output voltage vout(v) r1140q401x 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.05 0.1 0.15 0.2 0.25 0.3 output current i out (a) output voltage v out (v) 2) output voltage vs. input voltage r1140q151x 1 1.1 1.2 1.3 1.4 1.5 1.6 123456 input voltage v in (v) output voltage v out (v) 1ma 30ma 50ma r1140q281x 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 123456 input voltage v in (v) output voltage v out (v) 1ma 30ma 50ma vin=1.8v 2.0v 3.5v 2.5v vin=3.1v 3.3v 4.8v 3.8v vin=4.3v 4.5v 6.0v 5.0v
rev. 1.11 - 8 - r1140q40x 3 3.2 3.4 3.6 3.8 4 4.2 123456 input voltage v in (v) output voltage v out (v) 1ma 30ma 50ma 3) dropout voltage vs. output current r1140q151x 0 0.2 0.4 0.6 0.8 1 1.2 0 20 40 60 80 100 120 output current i out (ma) dropout voltage v dif (v) r1140q281x 0 0.05 0.1 0.15 0.2 0.25 0 20 40 60 80 100 120 output current i out (ma) dropout voltage v dif (v) r1140q401x 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 20 40 60 80 100 120 output current i out (ma) dropout voltage v dif (v) 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c
rev. 1.11 - 9 - 4) output voltage vs. temperature r1140q151x 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 -50 -25 0 25 50 75 100 temperature topt output voltage v out (v) r1140q281x 2.74 2.76 2.78 2.80 2.82 2.84 2.86 -50 -25 0 25 50 75 100 temperature topt output voltage v out (v) r1140q401x 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 -50 -25 0 25 50 75 100 temperature topt output voltage v out (v) 5) supply current vs. input voltage r1140q151x 0 10 20 30 40 50 60 70 80 90 123456 input voltage v in (v) supply current iss(ua) r1140q281x 0 10 20 30 40 50 60 70 80 90 123456 input voltage v in (v) supply current iss(ua) ( c ) ( c ) ( c )
rev. 1.11 - 10 - r1140q401x 0 10 20 30 40 50 60 70 80 90 123456 input voltage v in (v) supply current iss(ua) 6) supply current vs. temperature r1140q151x 0 40 80 120 160 200 -50 0 50 100 temperature topt supply current iss(ua) r1140q281x 0 40 80 120 160 200 -50 0 50 100 temperature topt supply current iss(ua) r1140q401x 0 40 80 120 160 200 -50 0 50 100 temperature topt supply current iss(ua) v in =2.5v v in =3.8v v in =5.0v ( c ) ( c ) ( c )
rev. 1.11 - 11 - 7) dropout voltage vs. set output voltage 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2.5 3.5 set output voltage vreg(v) dropout voltage v dif (v) 10ma 30ma 50ma 120ma 8) ripple rejection vs. frequency r1140q151x -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.1 1.0 10.0 100.0 frequency(khz) ripple rejection rr(db) 50ma 1ma 30ma r1140q151x -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.1 1.0 10.0 100.0 frequency(khz) ripple rejection rr(db) 50ma 1ma 30ma r1140q281x -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.1 1.0 10.0 100.0 frequency (khz) ripple rejection rr(db) 50ma 1ma 30ma r1140q281x -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.1 1.0 10.0 100.0 frequency(khz) ripple rejection rr(db) 50ma 1ma 30ma vin=2.5vdc+0.5vp-p cout = tantal 1.0uf , topt = 25 c vin=2.5vdc+0.5vp-p cout = tantal 2.2uf , topt = 25 c vin=3.8vdc+0.5vp-p cout = tantal 1.0uf , topt = 25 c vin=3.8vdc+0.5vp-p cout = tantal 2.2uf , topt = 25 c
rev. 1.11 - 12 - r1140q401x -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.1 1.0 10.0 100.0 frequency(khz) ripple rejection rr(db) 50ma 1ma 30ma r1140q401x -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.1 1.0 10.0 100.0 frequency(khz) ripple rejection rr(db) 50ma 1ma 30ma 9) ripple rejection vs. input bias r1140q281x iout=1ma 0 10 20 30 40 50 60 70 80 2.8 2.9 3 3.1 3.2 3.3 input voltage v in (v) ripple rejection r.r.(db) 1k 10k 100k r1140q281x iout=30ma 0 10 20 30 40 50 60 70 80 90 100 2.8 2.9 3 3.1 3.2 3.3 input voltage v in (v) ripple rejection r.r.(db) 1k 10k 100k r1140q281x iout=50ma 0 10 20 30 40 50 60 70 80 90 2.8 2.9 3 3.1 3.2 3.3 input voltage v in (v) ripple rejection r.r.(db) 1k 10k 100k vin=5.0vdc+0.5vp-p cout = tantal 1.0uf , topt = 25 c vin=5.0vdc+0.5vp-p cout = tantal 2.2uf , topt = 25 c
rev. 1.11 - 13 - 10) input transient response r1140q281x 2.77 2.78 2.79 2.8 2.81 2.82 2.83 0 102030405060708090100 time t(us) output voltage v out (v) 0 1 2 3 4 5 6 input voltage v in (v) r1140q281x 2.77 2.78 2.79 2.8 2.81 2.82 2.83 0 102030405060708090100 time t(us) output voltage v out (v) 0 1 2 3 4 5 6 input voltage v in (v) r1140q281x 2.77 2.78 2.79 2.8 2.81 2.82 2.83 0 102030405060708090100 time t(us) output voltage v out (v) 0 1 2 3 4 5 6 input voltage v in (v) v in =3.8v<-->4.8v i out =30ma,c out =1.0 f tr/tf=5 f v in v out v in =3.8v<-->4.8v i out =30ma,c out =2.2 f tr/tf=5 f v out v in v in =3.8v<-->4.8v i out =30ma,c out =6.8 f tr/tf=5 f v in v out
rev. 1.11 - 14 - 11) load transient response r1140q281x 2.7 2.75 2.8 2.85 2.9 2.95 3 -4 -2 0 2 4 6 8 10 12 14 16 time t(us) output voltage v out (v) -150 -100 -50 0 50 100 150 output current i out (ma) r1140q281x 2.7 2.75 2.8 2.85 2.9 2.95 3 -4 -2 0 2 4 6 8 10 12 14 16 time t(us) output voltage v out (v) -150 -100 -50 0 50 100 150 output current i out (ma) vin=3.8v cin=tantal 1.0uf cout=tantal 2.2uf r1140q281x 2.7 2.75 2.8 2.85 2.9 2.95 3 -4-20246810121416 time t(us) output voltage v out (v) -150 -100 -50 0 50 100 150 output current i out (ma) vin=3.8v cin=tantal 1.0uf cout=tantal 6.8uf v out i out v in =3.8v c in =tantal 1.0 f c out =tantal1.0 f tr/tf=5 f i out v out i out v out
rev. 1.11 - 15 -  technical notes when using these ics, consider the following points: in these ics, phase compensation is made for securing stable operation even if the load current is varied. for this purpose, be sure to use a capacitor c out with good frequency characteristics and esr (equivalent series resistance) of which is in the range described as follows: the relations between i out (output current) and esr of output capacitor are shown below. the conditions when the white noise level is under 40 v(avg.) are marked as the hatched area in the graph. (1) v in =3.8v (2) frequency band: 10hz to 2mhz (3) temperature: 25 c r1140q281x v in =3.8v c in =ceramic 1 f, c out =ceramic 2.2 f r1140q281x v in =3.8v c in =ceramic 1 f, c out =ceramic 2.2 f 0.01 0.1 1 10 100 0 20 40 60 80 100 120 load current i out1 (ma) esr(ohm) 0.01 0.1 1 10 100 0 20 40 60 80 100 120 load current i out1 (ma) esr(ohm)


▲Up To Search▲   

 
Price & Availability of R1140Q221D-TL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X